

A Feedback Shift Correction in Predicting Conversion Rates under Delayed Feedback

<u>Shota Yasui,</u> Gota Morishita, Komei Fujita, Masashi Shibata

The Web Conference 2020

Introduction and Problem Setting

Conversion Prediction

Predict Conversion-Rate(CVR) for each request.

Predicting CVR is important to decide the bid price

Ideal loss function

The following loss should be minimized.

$$G \equiv \mathbb{E}_{(x,c)\sim(X,C)} \left[L\left(x,c;\hat{f}(x,\theta)\right) \right]$$

The ideal parameters are as follow

$$\theta^* \in \underset{\theta \in \Theta}{\arg \min G}.$$

This is not possible! Because we do not observe c due to the <u>delayed feedback</u>.

Delayed Feedback

Delayed Feedback

timestamp of click and cv for certain user

• user takes sometimes to purchase items after clicked the ad.

The problem of Delayed Feedback

- we can not observe CV for this user
- this sample is recognized as negative label! (mislabeled)

The relation between Y and C

8

Bias in standard supervised approach

Inconsistent!

Our Solution

Importance Weight Approach

Importance Weight(FSIW) approach

We propose consistent loss based on the Importance Weight(Propensity Score)

$$\underbrace{\mathbb{E}_{(x,c)\sim(X,C)}\left[L\left(x,c;\hat{f}(x,\theta)\right)\right]}_{\underbrace{\text{Unbiased-loss}}_{(\text{consistent?})}} \mathbb{E}_{(x,y)\sim(X,Y)}\left[\frac{P(C=y|X=x)}{P(Y=y|X=x)}L\left(x,y;\hat{f}(\theta)\right)\right]$$

Importance Weight

Importance Weight(FSIW) approach

Our empirical loss

$$\hat{G}_{IW}^{(n)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{P(C = y_i | X = x_i)}{P(Y = y_i | X = x_i)} L\left(x_i, y_i; \hat{f}(x_i, \theta)\right)$$

Importance Weight

The basic idea is to weight each sample by the conditional density ratio.

How to estimate FSIW

$$P(Y = 1|X = x) = P(C = 1|X = x)P(S = 1|C = 1, X = x)$$
$$P(Y = 0|X = x) = P(C = 0|X = x) + P(S = 0, C = 1|X = x)$$

$$\begin{aligned} &\frac{P(C=1|X=x)}{P(Y=1|X=x)} = \frac{1}{P(S=1|C=1,X=x)},\\ &\frac{P(C=0|X=x)}{P(Y=0|X=x)} = (1-\frac{P(S=0,C=1|X=x)}{P(Y=0|X=x)}), \end{aligned}$$

We estimate these probability from data old enough to observe S and C.

features of our proposed method

It is just a importance weight

- can be used for any CVR model
- o can fit the delay nonparametrically
- \circ does not increase the time complexity of

CVR models

Figure 4: Criteo Dataset: Probability density function of the delays between clicks and conversions. The oscillating shape is a result of daily cyclicality.

Experiment

Conversion Logs Dataset

these Terms.

- Open data provided by Criteo(<u>Link</u>)
- 30days of click and CV log
- Used in Chapelle(2014)
- observation period is 30days

Experiment procedure

Result 1

	<u>Pure-Logistic</u> <u>Regression</u>	<u>Chapelle(2014</u>)	Proposed Method	
	LR	DFM	LR-FSIW	
LL	0.4076	0.3989	0.3928*	
PR-AUC	0.6345	0.6481	0.6482	
NLL	25.21	27.33	28.02*	

- Normalized-logloss(NLL) is the most important metrics
 - we use prediction probability for bidding
 - \circ logloss(LL) is sensitive to the base CVR

Dynalyst Data

A Dynalyst

- DSP in Cyberagent.inc
- 2 experiments
 - \circ the same procedure as the first experiment
 - focus on three campaigns
 - baseline model is FFM (Juan 2017)
 - Online A/B test

Three Campaigns

- Observational period is different by campaings
 - S: 1days
 - M: 3days
 - L: 7days

Result 2

		LL	PR-AUC	NLL
Campaign L	FFM	0.3523	0.1612	1.7197
	FFMIW	0.3500	0.1660	2.304*
Campaign M	FFM	0.2409	0.0808	0.2160
	FFMIW	0.2401	0.0828	0.3771
Campaign S	FFM	0.4026	0.2055	2.9953
	FFMIW	0.3967	0.2058	3.361

Only Campaign L shows the improvement.

Follow Up Online Experiment@Campaign-L

CV	Cost	CPA
+31%*	+28%*	-2%

Table 5: Online relative comparison of FFM and FFMIW in the conversion(CV), Cost and CPA. The shown values are the relative change in FFMIW against FFM. * means statistical significance.

- Improved cost consumption and CV.
- CPA does not change or slightly decreased.

Conclusion

• We proposed a consistent loss to predict CVR under Delayed Feedback.

• Our method performs better in two offline and one online experiment.

Thank you for listening! 26

appendix

cumulative distribution of delay

Figure 1: Criteo Dataset: Cumulative distribution of the delay between the click and its conversion.

effect of counterfactual deadline

Figure 5: LL of different counterfactual deadline lengths